qat.backend.qblox.acquisition module
- class AcqData(**data)
Bases:
BaseModelThe actual acquisition data, it represents the value associated with the key “acquisition” in the acquisition blob returned by Qblox. This object contains scope data and binned data.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
-
bins:
BinnedAcqData
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
scope:
ScopeAcqData
-
bins:
- class Acquisition(**data)
Bases:
BaseModelRepresents a single acquisition. In Qblox terminology, this object contains scope, integrated, and threshold data all at once. It’s up to the SW layer to pick up what it needs and adapt it to its flow.
An acquisition contains is described by a name, index, and blob data represented by
AcqDataCreate a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- static accumulate(acq1, acq2)
-
index:
int
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
name:
str
- class BinnedAcqData(**data)
Bases:
BaseModelBinned data is data that’s been acquired and processed via different routes such as squared acquisition, weighed integration. Processing here refers to steps like averaging, rotation, and thresholding which are executed by the hardware.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
-
avg_count:
Annotated[NDArray[Shape[* x], (int8,int16,int32,int64,int16,uint8,uint16,uint32,uint64,uint16)]]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
threshold:
Annotated[NDArray[Shape[* x], (float16,float32,float64,float32,float64)]]
-
avg_count:
- class IntegData(**data)
Bases:
BaseModelPath 0 refers to I while Path 1 refers to Q
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
-
i:
Annotated[NDArray[Shape[* x], (float16,float32,float64,float32,float64)]]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
q:
Annotated[NDArray[Shape[* x], (float16,float32,float64,float32,float64)]]
-
i:
- class PathData(**data)
Bases:
BaseModelThis object wraps the actual data as a list of samples, the number of averages performed by the hardware (if any), and whether the hw observed any out-of-range samples.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
-
avg_count:
int
-
data:
Annotated[NDArray[Shape[* x], (float16,float32,float64,float32,float64)]]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
oor:
bool
-
avg_count:
- class ScopeAcqData(**data)
Bases:
BaseModelPath 0 refers to I while Path 1 refers to Q. Their lengths are statically equal to
Constants.MAX_SAMPLE_SIZE_SCOPE_ACQUISITIONSCreate a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].