qat.core.config.descriptions module
- class ClassDescription(**data)
Bases:
NoExtraFieldsModel
,Generic
[T
]Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
-
config:
dict
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'ser_json_inf_nan': 'constants', 'use_enum_values': False, 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- partial()
Returns a partially configured class
-
type:
TypeVar
(T
)
-
config:
- class ClassDescription(**data)
Bases:
NoExtraFieldsModel
,Generic
[T
]Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
-
config:
dict
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'ser_json_inf_nan': 'constants', 'use_enum_values': False, 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- partial()
Returns a partially configured class
-
type:
TypeVar
(T
)
-
config:
- class HardwareLoaderDescription(**data)
Bases:
NoExtraFieldsModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
-
config:
dict
- construct()
Returns the described Hardware Loader
- Return type:
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'ser_json_inf_nan': 'constants', 'use_enum_values': False, 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
name:
str
-
type:
Annotated
[ImportString
]
-
config:
- class PipelineClassDescription(**data)
Bases:
NoExtraFieldsModel
Allows pipelines to be specified in a granular way and constructed as an updateable pipeline, allowing the hardware model to be refreshed.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
-
backend:
Union
[Annotated
[ImportString
],Annotated
[ClassDescription[Annotated[ImportString, AfterValidator]]
]]
-
config:
dict
- construct(loader)
Constructs and returns a Pipeline from its description
- Parameters:
model¶ – The instantiated hardware model, this is required to be the model provided by the associated hardware_loader
- Return type:
- Returns:
The pipeline as a
ConfigurablePipeline
instance.
-
default:
bool
-
engine:
Union
[Annotated
[ImportString
],Annotated
[ClassDescription[Annotated[ImportString, AfterValidator]]
]]
-
frontend:
Union
[Annotated
[ImportString
],Annotated
[ClassDescription[Annotated[ImportString, AfterValidator]]
]]
-
hardware_loader:
str
|None
-
middleend:
Union
[Annotated
[ImportString
],Annotated
[ClassDescription[Annotated[ImportString, AfterValidator]]
]]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'ser_json_inf_nan': 'constants', 'use_enum_values': False, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
name:
str
-
results_pipeline:
Union
[Annotated
[ImportString
],Annotated
[ClassDescription[Annotated[ImportString, AfterValidator]]
]]
-
runtime:
Union
[Annotated
[ImportString
],Annotated
[ClassDescription[Annotated[ImportString, AfterValidator]]
]]
-
target_data:
Union
[Annotated
[ImportString
],Annotated
[ClassDescription[Annotated[ImportString, AfterValidator]]
]]
-
backend:
- class PipelineFactoryDescription(**data)
Bases:
NoExtraFieldsModel
A description pointing to a function that produces a pipeline, which is configured by a model, target data, an engine, and custom configuration.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
-
config:
dict
- construct(loader)
Constructs and returns a Pipeline from its description
- Parameters:
model¶ – The instantiated hardware model, this is required to be the model provided by the associated hardware_loader
- Return type:
- Returns:
The constructed pipeline
-
default:
bool
-
engine:
Union
[Annotated
[ImportString
],Annotated
[ClassDescription[Annotated[ImportString, AfterValidator]]
],None
]
-
hardware_loader:
str
|None
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'ser_json_inf_nan': 'constants', 'use_enum_values': False, 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
name:
str
-
pipeline:
Annotated
[ImportString
]
-
target_data:
Optional
[Annotated
[ImportString
]]
-
config:
- class PipelineInstanceDescription(**data)
Bases:
NoExtraFieldsModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
-
default:
bool
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'ser_json_inf_nan': 'constants', 'use_enum_values': False, 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
name:
str
-
pipeline:
Annotated
[ImportString
]
-
default:
- class UpdateablePipelineDescription(**data)
Bases:
NoExtraFieldsModel
A description pointing to an updateable pipeline, which can be configured with a custom hardware model (loader), target data, and an engine. It also always custom configuration (given by the concrete updateable pipeline class).
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
-
config:
dict
- construct(loader)
Constructs and returns a Pipeline from its description
- Parameters:
loader¶ (
BaseModelLoader
) – The hardware model loader to fetch the hardware model.- Return type:
- Returns:
The updateable pipeline with a constructed pipeline instance.
-
default:
bool
-
engine:
Union
[Annotated
[ImportString
],Annotated
[ClassDescription[Annotated[ImportString, AfterValidator]]
],None
]
-
hardware_loader:
str
|None
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'ser_json_inf_nan': 'constants', 'use_enum_values': False, 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
name:
str
-
pipeline:
Annotated
[ImportString
]
-
target_data:
Optional
[Annotated
[ImportString
]]
-
config: