qat.purr.backends.qblox.metrics_base module

class MetricsManager(enabled_metrics=<MetricsType.Default: 6>, **kwargs)

Bases: BaseModel

Pydantic version based on qat.purr.compiler.metrics.py elements.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

are_enabled(metric)
as_dict()

Generates a dictionary of the valid metrics.

enable(enabled_metrics, overwrite=False)

Enable these sets of metrics for collection. If overwrite is True then the passed-in values will overwrite existing ones.

enable_metrics(enabled_metrics=None, overwrite=True)

Enables the set of metrics in the current collection. If overwrite is set to true, or there are no compilation metrics it’ll create a new collection, if overwrite is false it’ll enable these metrics in the currently-active collection.

enabled_metrics: Optional[MetricsType]
get_metric(metric)
merge(other)
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

optimized_circuit: Optional[str]
optimized_instruction_count: Optional[int]
record_metric(metric, value)
classmethod validate_all_fields_exist(value)

Validate that all expected MetricsType flags have defined fields.