qat.backend.qblox.data.acquisition module
- class AcqData(**data)
Bases:
BaseModel
The actual acquisition data, it represents the value associated with the key “acquisition” in the acquisition blob returned by Qblox. This object contains scope data and binned data.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
-
bins:
BinnedAcqData
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
scope:
ScopeAcqData
-
bins:
- class Acquisition(**data)
Bases:
BaseModel
Represents a single acquisition. In Qblox terminology, this object contains scope, integrated, and threshold data all at once. It’s up to the SW layer to pick up what it needs and adapt it to its flow.
An acquisition contains is described by a name, index, and blob data represented by
AcqData
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- static accumulate(acq1, acq2)
-
index:
int
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
name:
str
- class BinnedAcqData(**data)
Bases:
BaseModel
Binned data is data that’s been acquired and processed via different routes such as squared acquisition, weighed integration. Processing here refers to steps like averaging, rotation, and thresholding which are executed by the hardware.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
-
avg_count:
Annotated
[NDArray
[Shape
[* x], (int8
,int16
,int32
,int64
,int16
,uint8
,uint16
,uint32
,uint64
,uint16
)]]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
threshold:
Annotated
[NDArray
[Shape
[* x], (float16
,float32
,float64
,float32
,float64
)]]
-
avg_count:
- class IntegData(**data)
Bases:
BaseModel
Path 0 refers to I while Path 1 refers to Q
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
-
i:
Annotated
[NDArray
[Shape
[* x], (float16
,float32
,float64
,float32
,float64
)]]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
q:
Annotated
[NDArray
[Shape
[* x], (float16
,float32
,float64
,float32
,float64
)]]
-
i:
- class PathData(**data)
Bases:
BaseModel
This object wraps the actual data as a list of samples, the number of averages performed by the hardware (if any), and whether the hw observed any out-of-range samples.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
-
avg_count:
int
-
data:
Annotated
[NDArray
[Shape
[* x], (float16
,float32
,float64
,float32
,float64
)]]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
oor:
bool
-
avg_count:
- class ScopeAcqData(**data)
Bases:
BaseModel
Path 0 refers to I while Path 1 refers to Q. Their lengths are statically equal to
Constants.MAX_SAMPLE_SIZE_SCOPE_ACQUISITIONS
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].